Halichonadin E, a Dimeric Sesquiterpenoid from the Sponge Halichondria sp.^{\perp}

Shingo Kozawa,[†] Haruaki Ishiyama,[†] Jane Fromont,[‡] and Jun'ichi Kobayashi^{*,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Western Australian Museum, Locked Bay 49, Welshpool DC, WA 6986, Australia

Received June 28, 2007

A new dimeric sesquiterpenoid with eudesmane and aromadendrane skeletons linked through a urea fragment, halichonadin E(1), was isolated from a marine sponge *Halichondria* sp., and the gross structure and relative configuration of 1 were elucidated on the basis of spectroscopic data. Halichonadin E(1) is the first hetero-dimeric sesquiterpenoid with eudesmane and aromadendrane skeletons linked through a urea fragment.

A number of sesquiterpene isothiocyanates, isonitriles, and formamides have been isolated from marine sponges of the genus *Halichondria*,¹ and these compounds are thought to have a role in maintaining ecological systems, such as an allomon in the browser-prey relationship.^{2,3} During a search for structurally unique metabolites from Okinawan marine sponges,^{4,5} a new dimeric sesquiterpenoid, halichonadin E (1), was isolated from a sponge, *Halichondria* sp. Herein, we describe the isolation and structure elucidation of **1**.

The sponge Halichondria sp. (SS-1163) collected off Unten Port, Okinawa, was extracted with MeOH, and the extract was partitioned between EtOAc and water. The EtOAc-soluble materials were subjected to passage over a silica gel column (n-hexane/EtOAc, 95:5) followed by C18 HPLC (MeOH/H2O, 95:5) to afford halichonadin E (1) (1, 0.0001%, wet wt) together with four known related terpenoids, halichonadins A and $\overline{C^5}$ and acanthenes B and C.⁶ The molecular formula, $C_{31}H_{52}N_2O$, of halichonadin E (1) was established by HREIMS [m/z 468.4066 (M⁺), Δ -1.3 mmu]. IR (1638 cm⁻¹) and ¹³C NMR ($\delta_{\rm C}$ 157.1) data suggested the presence of a urea functionality. The gross structure of 1 was deduced from detailed analysis of the ¹H and ¹³C NMR data (Table 1) aided by 2D NMR experiments (1H-1H COSY, HOHAHA, HMQC, and HMBC). The ¹³C NMR data indicated that **1** possesses two sp² and three sp³ quaternary carbons, nine sp³ methines, one sp² and nine sp³ methylenes, and seven methyl groups. Among them, one sp³ methine ($\delta_{\rm C}$ 47.4; $\delta_{\rm H}$ 3.65) and one sp³ quaternary carbon ($\delta_{\rm C}$ 58.1) were ascribed to those bearing a nitrogen atom, while one sp² quaternary carbon ($\delta_{\rm C}$ 157.1) was attributed to that bearing an oxygen atom. The ¹H-¹H COSY and HOHAHA spectra revealed connectivities of C-1 to C-3, C-5 to C-9, and C-11 to C-12 and C-13 (Figure 1). HMBC correlations of H₃-15 to C-1, C-5, C-9,

Figure 1. Selected 2D NMR correlations for halichonadin E (1).

and C-10, H₃-12 to C-7, H-14a to C-3 and C-5, and H₂-2 to C-4 revealed the presence of a eudesmane skeleton (Figure 1). Connectivities of C-1' to C-6', C-1' to C-5', C-4' to C-14', and C-7' to C-9' were deduced from ¹H-⁻¹H COSY and HOHAHA correlations (Figure 1). HMBC correlations of H-1' to C-10', H₃-15' to C-9' and C-10', H-6' to C-12', H-7' to C-13', H₃-12' and H₃-13' to C-11', and H-8'a to C-6' suggested the presence of an aromadendrane skeleton (Figure 1). NOESY correlations of H-6 to H₃-15' and H-14a to H-3'a in **1** indicated the connection of the eudesmane and aromadendrane skeletons though a urea linkage.

Thus, the gross structure of halichonadin E was elucidated to be **1**, consisting of eudesmane and aromadendrane skeletons linked through a urea fragment.

α-Orientations of H-5 and H-7 and β-orientations of H-6 and Me-15 of **1** in the eudesmane skeleton and chair conformations of two cyclohexane rings in the decalin skeleton were elucidated by NOESY correlations of H₃-15 to H₂-2, H-6, and H-8b and of H-5 to H-3b and H-7. NOESY correlations of H-1' to H-6', H-9'a, and H₃-14', H-5' to H₃-12', H-7' to H-9'a, H-8'a to H₃-13', and H-8'b to H₃-15' in the aromadendrane skeleton indicated α-orientations of H-1', Me-14', H-6', and H-7' and β-orientations of H-5' and Me-15' (Figure 2). Furthermore, ¹H and ¹³C NMR data of **1** were similar to those of halichonadin C⁵ and axisonitrile-2,⁷ which have the same relative stereochemistry as that of **1** and have been isolated from *Halichondria* sp. and *Axinella cannabina*, respectively. The relative stereochemistry and conformation of the two ring systems through a urea linkage were elucidated by NOESY correlations of H-6 to H₃-15' and H-14a to H-3'a, as depicted in Figure 2.

 $^{^{\}perp}$ Dedicated to Dr. G. Robert Pettit of Arizona State University for his pioneering work on bioactive natural products.

^{*} To whom correspondence should be addressed. Tel: +81-11-706-3239. Fax: +81-11-706-4989. E-mail: jkobay@pharm.hokudai.ac.jp.

[†] Hokkaido University.

^{*} Western Australian Museum.

Notes

Figure 2. Selected NOESY correlations for halichonadin E (1) (lower) and for aromadendrane and eudesmane moieties (upper right and left, respectively) of 1.

Table 1. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Data of Halichonadin E (1) in CDCl_3

position	$^{1}\mathrm{H}^{a}$	$^{13}C^a$	H coupled with C^b
1a	1.41 (m)	42.3	
1b	1.23 (m)		
2	1.59 (m)	24.3	4,10
3a	2.28 (brd, 12.0)	38.6	
3b	1.88 (m)		
4		146.2	
5	1.65 (m)	57.8	
6	3.65(m)	47.4	
7	1.39 (m)	37.8	
8a	1.47 (m)	18.8	7
8b	1.32 (m)		
9a	1.49 (m)	40.6	
9b	1.17 (m)		
10		29.7	
11	1.97 (m)	26.4	
12	0.90 (d, 6.6)	21.8	7
13	0.89 (d, 7.2)	16.6	
14a	4.84 (brs)	108.2	3, 5
14b	4.68 (brs)		
15	0.75 (s)	17.3	1, 5, 9, 10
16		157.1	
1'	2.49 (m)	53.6	5', 6', 10'
2′a	1.27 (m)	26.8	
2′b	1.22 (m)		5'
3′a	1.64 (m)	34.5	
3′b	1.20 (m)		
4'	1.98 (m)	36.6	
5'	1.34 (m)	38.7	4', 6', 10'
6'	0.53 (t, 10.8)	28.7	12'
7'	0.63 (dt, 6.0, 10.8)	26.9	13'
8'a	1.74 (m)	20.2	6', 9', 10'
8′b	0.95 (m)		
9′a	2.10 (m)	40.3	
9′b	1.89 (m)		
10'		58.1	
11'		19.8	
12'	0.99 (s)	28.7	
13'	0.95 (s)	16.2	
14'	0.91 (m)	15.9	4', 5'
15'	1.11 (s)	18.9	9', 10'

^{*a*} δ in ppm. ^{*b*} HMBC correlations.

Halichonadin E (1) is the first hetero-dimeric sesquiterpenoid with eudesmane and aromadendrane skeletons linked through a urea fragment isolated from a sponge (*Halichondria* sp.), although some homo-dimeric sesquiterpenoids such as halichonadin A⁵ and *N*,*N*'-bis[(1*Z*,4*Z*)-7 α *H*-germacra-1(10),4-dienyl]urea⁸ have been isolated from sponges of the genera *Halichondria* and *Axinyssa*, respectively. Halichonadin E (1) showed cytotoxicity against L1210 murine leukemia (IC₅₀, 3.0 μ g/mL) and KB human epidermoid carcinoma cells (IC₅₀, 2.6 μ g/mL) *in vitro*.

Experimental Section

General Experimental Procedures. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. The IR spectrum was taken on a JASCO FT/IR-5300 IR spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-600 NMR spectrometer. EI mass spectra were obtained on a DX-303 mass spectrometer.

Animal Material. The sponge *Halichondria* sp. (order Halichondrida, family Halichondriidae) was collected off Unten Port, Okinawa, Japan, in May 2006, and kept frozen until used. The sponge was a dense compact mound or thickly encrusted, and the surface was smooth and faintly hispid. The sponge skeleton consisted of irregular tracts of spicules in a haphazard arrangement, rare fiber development at nodes, and occasional ascending tracts, which were 80 μ m wide. The sponge spicules were long, slender oxeas with long, tapering pencil points, in a large size range, 580 × 10 μ m.

A voucher specimen (SS-1163) was deposited at the Graduate School of Pharmaceutical Sciences, Hokkaido University.

Extraction and Isolation. The sponge (0.55 kg, wet weight) was extracted with methanol (1 L \times 3). The methanolic extract (24.5 g) was partitioned between water (300 mL) and EtOAc (300 mL \times 3). The EtOAc-soluble materials (2.9 g) were subjected to passage over a silica gel column (*n*-hexane/EtOAc, 95:5) followed by C₁₈ HPLC (YMC-Pack Pro C18, YMC Co., Ltd., 1.0 \times 250 mm; flow rate 2.5 mL/min; MeOH/H₂O, 95:5; UV detection at 220 nm) to afford halichonadin E (1, *t*_R 21.3 min, 0.7 mg, 0.0001%, wet wt).

Halichonadin E (1): colorless, amorphous solid; $[α]^{24}_D$ +7.1 (*c* 0.10, MeOH); IR (NaCl) $ν_{max}$ 3323 and 1638 cm⁻¹; ¹H and ¹³C NMR (Table 1); EIMS (positive) *m/z* 468 (M⁺); HREIMS *m/z* 468.4066 (M⁺), calcd for C₃₁H₅₂N₂O, 468.4079.

Acknowledgment. We thank S. Oka, Center for Instrumental Analysis, Hokkaido University, for EIMS measurements, and Z.

Notes

Nagahama and K. Uehara for their help with the sponge collection. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: A photograph of *Halichondria* sp. is provided free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Wright, A. D.; Köning, G. M. J. Nat. Prod. 1996, 59, 710-716.
- (1) Highi, D. J. Nat. Prod. Rep. 1984, 1, 551–598. (b) Faulkner,
 D. J. Nat. Prod. Rep. 1987, 4, 539–590. (c) Edenborough, M. S.;
 Herbert, R. B. Nat. Prod. Rep. 1988, 5, 229–245.
- (3) Burreson, B. J.; Scheuer, P. J.; Finer, J.; Clardy, J. J. Am. Chem. Soc. 1975, 97, 4763–4764.
- (4) (a) Tsuda, M.; Endo, T.; Perpelescu, M.; Yoshida, S.; Watanabe, K.; Fromont, J.; Mikami, Y.; Kobayashi, J. *Tetrahedron* **2003**, *59*, 1137–1141. (b) Endo, T.; Tsuda, M.; Okada, T.; Mitsuhashi, S.; Shima, H.; Kikuchi, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. *J. Nat. Prod.* **2004**, *67*, 1262–1267.
- (5) Ishiyama, H.; Hashimoto, A.; Fromont, J.; Hoshino, Y.; Mikami, Y.; Kobayashi, J. J. Nat. Prod. 2005, 61, 1101–1105.
- (6) Burgoyne, D. L.; Dumdei, E. J.; Andersen, R. J. Tetrahedron 1993, 49, 4503–4510.
- (7) Ciminiello, P.; Fattorusso, E.; Magno, S.; Mayol, L. Can. J. Chem. 1987, 65, 518–522.
- (8) Veenna, S.; Khanit, S. J. Nat. Prod. 2004, 67, 503-505.

NP0703139